Immune gene expression in sympatric and allopatric stickleback-tapeworm combinations

Deutsche Forschungsgemeinschaft

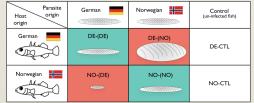
DFG

Noémie Erin, Irene E Samonte-Padilla, Manfred Milinski, Martin Kalbe

Schistocephalus solidus is a parasitic tapeworm with a complex life cycle. A special characteristic of S. solidus is its extremely high specificity to its secondary host, the three-spined stickleback (Gasterosteus aculeatus), where it realizes its complete growth. This implies close co-adaptation and makes the stickleback-S. solidus system a very suitable model for experimental studies on reciprocal adaptation in host-parasite interactions 1,2.

We used lab-bred fish infected with worms from two different co-evolved populations (a Norwegian and a German one) to investigate the specificity of the host immune response at the gene expression level.

Schistocephalus solidus life cycle³

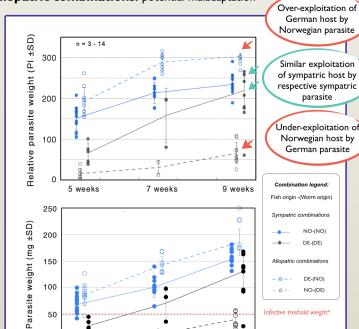

Final host: Fish-eating bird

Ď.

Ist intermediate host: Cyclopoid Copepod

Experimental design

We used a fully crossed design to produce sympatric and allopatric combinations of three-spined stickleback infected with S. solidus.



The fish were dissected 5, 7 and 9 weeks post infection. Parasite and relevant immunological tissue samples (headkidney and spleen) were harvested for expression studies.

Phenotypic evidence for local adaptation

Sympatric combinations: potential optimal virulence Allopatric combinations: potential maladaptation

7 weeks Time post infection

Preliminary analyses of gene expressions show local adaptation in fish-worm pairs and divergent evolution for host resistance and parasite virulence in the two studied populations.

50

5 weeks

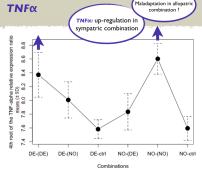
The gene expression of **8 immune relevant genes** has been analyzed by Real-Time quantitative PCR and calculation

Gene expression analysis and preliminary results:

of relative expression ratios.

Gene name / abbreviation	Function	Immune pathway
Interleukin I Beta IL-1 B	Cytokine	Innate immunity (Th1)
Tumor Necrosis Factor alpha <i>TNF</i> α	Cytokine	Innate immunity (Th1)
Transforming Growth Factor Beta Ι <i>TGF-β1</i>	Cytokine	Innate immunity (Th2)
Macrophage Migration Inhibitory Factor MIF	Lymphokine	Innate immunity
Toll-Lile-Receptor 2 TLR2	Antigen recognition	Innate immunity
Superoxide Dismutase 2 SOD2	Antioxidant	Innate immunity
Major Histocompatibility complex class II Beta MHC class II β	Antigen recognition	Adaptive immunity
Immunoglobulin M IgM	Antibody	Adaptive immunity

Barber & Scharsack, 2009, Parasitology


Hammerschmidt & Kurtz, 2009, Advances in Parasitology

Infective treshold weight

Milinski, 2006, Integrative & Comparative Biology
Tierney & Crompton, 1992, The Journal of Parasitology

⁵ Pfaffl et al., 2001, Nucleic Acids Research

ean expression of two immune genes (TNFlpha & TLR2) in the different combinations :

TLR2 LR2: up-regulation onl in case of Norwegian S. solidus infection 4.4 elative (± SD) 4.2 TLR2 mean 4.0 ŧ DE-(DE) DE-(NO) DE-ctrl NO-(DE) NO-(NO)

Relative expression ratio $\mathrm{ratio} = \frac{(E_{\mathrm{target}})^{\Delta \mathrm{CP}_{\mathrm{target}}(sample)}}{(E_{\mathrm{ref}})^{\Delta \mathrm{CP}_{\mathrm{ref}}(sample)}}$

Acknowledgements Christophe Eizaguirre and Chaitanya S. Gokhale

Contact Erin Noémie erin@evolbio.mpg.de

Max Planck Institute for Evolutionary Biology Department of Evolutionary Ecology August-Thienemann-Str. 2